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Wheat (Triticum aestivum) is one of the most important cereal crops that 

contributed significantly for human survival and adapted widely across different 

regions with altitude levels ranging from sea level to 4570 in Tibet. Such wide 

cultivation of wheat across all continents led to the harvest of good wheat crop 

around the world. Bread wheat covers more than 95% of the wheat production at 

global level. Goal of wheat breeding is to develop improved genotypes for yield 

along with other traits. The initial breeding trials use small un replicated plots or 

with limited replications. As selection continues for desired traits this practice 

reduces the size of the population. Researchers commonly use replicated multi-

environment trials in the final stages of the selection process.

Phenotypic data are generated at each stage evaluation in which the genotypes 

are tested. The data may be analyzed for different purposes i.e. parent selection, 

ranking of genotypes and comparing performance of genotypes in different 

environments. Data generated can be used to recommend  the most appropriate 

strategies to maximize improvement towards short and long term breeding 

goals. Because the genotypes often derived from different stages of selection, 

the amount and precision of the data may dramatically vary. Improved estimates 

of trait means are often obtained with some form of an additive linear model. 

Such models adjust observed values for non-genetic effects to obtain better 

estimates of the genetic effects. A classic method  of obtaining  genetic effects is 

by combining data across locations and considering all effects in the model as 

fixed. Unfortunately, cross appraisal are typically incomplete and unbalanced, 

which creates theoretical concerns about the fixed linear model prediction. 

Mixed models provide alternative analytical approaches that may overcome 

limitations of the fixed analytical approach. Best Linear Unbiased Prediction 

(BLUP), in a mixed linear model framework, has been used for prediction and 

estimation of genetic merit of tested material in plant breeding research trails. 

This method demonstrates better prediction accuracy than that obtained by 

using a fixed linear model.
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Since ancient times, wheat has played an important role to feed the world 

population. Wheat fulfill 19% of calories and 21% of proteins of human beings . 

Number of consumable food types such as bread, chapati, biscuits, pasta, 

macaroni, injera, and porridges are prepared by wheat flour alone or in mixture 

with other cereals flour. An increase in urbanization accompanied with the 

change in food habits, the demand for wheat is rising every year across the all 

regions of the world. Wheat production has increased significantly over the years 

at global level. This appreciable increase in wheat production is attributed to the 

adoption of improved technology packages, viz. the adoption of high yielding and 

disease resistant varieties with better response to inputs, machineries and better 

management practices, coupled with conducive policies and strong institutions 

linkage. Although there have been impressive increments in wheat production 

across the years but still a big gap mentioned by policy planners between the 

demand and annual harvest of wheat. In the face of climate change with 

continued water shortage both in irrigated and rained environments, it is 

important to develop high yielding wheat genotypes with high water use 

efficiency which combines both high yield potential and resistance to drought 

and heat stresses along with resistance to the major biotic stresses. To this end, it 

is important to formulate efficient breeding methods and strategies that enable 

to increase genetic gain while utilizing the depleting  resources efficiently. 

The challenge now is to maintain the improvement of crops at a rate that will meet 

a rapidly increasing world population (projected to be 8.3 billion people in 2025). 

Borlaug mentioned the important point to achieve more production both 

conventional breeding and sophisticated recent methodologies will be combined 

accordingly. Further suggested that 'While recent research tools offer much 

promise, it is also important to recognize that conventional plant breeding 

methods are continuing to make significant contributions to improved food 

production and enhanced nutrition'. It is, therefore, vital that the statistical 

methods used to design and analyse data from breeding and evaluation 

programmes are as accurate, efficient and informative as possible.

Modern statistics and its application to the analysis of agricultural research 

experiments can be traced back about 90 yr when British statistician Sir Ronald 

Aylmer Fisher was hired in 1919 by Rothamsted Experimental Station to analyze 

field experiments. It was the analysis of these experiments that led Sir Fisher to 

invent and utilize the techniques known as analysis of variance (ANOVA) and 

experimental designs. These techniques have revolutionized field and laboratory 

experimentation in modern agriculture, providing ways to minimize or avoid bias, 

improve precision and secure valid conclusions. While these conventional 

techniques remain widely used, new statistical methods that take advantages of 

the increased computing power have an increasing role in agricultural research. 
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The development and implementation of general linear models  and mixed 

models  are two major advancements that had a great impact on agricultural 

research. The results of experiments are influenced by two kinds of factors. First, 

the treatment factors are often chosen intentionally for answering a research 

question. Second, many factors are not of direct relevance to the objectives of the 

experiments but cause extraneous variations (collectively known as 

experimental errors) which tend to mask the effects of the treatments. The 

experimental errors are either due to inherent variability in experimental 

materials and across growing seasons and soils or to lack of uniformity in the 

physical conduct of the experiment. Many experimental designs are available in 

the literature for minimizing or controlling the experimental errors. The presence 

of the two kinds of factors in most experiments has posed the need for 

determining whether or not a factor should be considered a fixed or random 

effect. Many experiments are carried out using a complete or incomplete block 

design with a few replications at multiple sites and over several years. These 

multi-environmental experiments are needed to infer the treatment 

performance for future years over a wide region. In such experiments, treatments 

are fixed effects as reasoned above, but the extraneous factors may be fixed or 

random, depending on whether or not they are subject to randomization.

Examples of random extraneous factors include randomly selected sampling 

units (e.g., plants, soil samples or quadrants in pest surveys) or randomization 

units (e.g., rows, columns, and plots). However, blocking units or replications may 

not necessarily be involved in randomization. For example, the choice of blocks, 

sites and years is often dictated by the availability of land and time constraints for 

completing experiments. Sometimes, even if a factor should be considered 

random, it may have too few levels to allow for a reliable estimate of its variance 

and a more pragmatic approach is to consider the factor fixed. Thus, to determine 

if an effect is fixed or random is not always a clear-cut decision. 
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Most agricultural traits of cereal crops are quantitative in nature, are controlled 

by poly genes with various kinds of genetic effects and are affected by the 

environment. Replicated yield trials at several environments are often used in 

final stages of breeding programs to select genotypes based on yield and other 

economically important traits. Each genotype is commonly tested in more than 

one environment represented by locations or years or their combinations. A 

usual feature of all multi environment trials (MET) is the attempt to represent a 

relatively large target population of environments by a number of representative 

locations. In multi environment trials, environments might be reasonably 

assumed as random effects. However, the genotype effects might be treated as 

fixed since only a few selected genotypes are usually involved in late breeding 

stages. 

Evaluating the genotype performance is the main aim of multi-environment trials 

in wheat coordinating trials. Broadly two types of inference are of interest (1) 

general performance of a genotype known as broad inference, and (2) 

environment specific or narrow inference - the performance of a genotype within 

a specific environment.

The traditional analytical approach for broad inference considers genotype 

average across environments that are subjected to multiple pair wise 

comparisons. Narrow inference from multi environment trials relies on 

comparisons of genotypic means in specific environments. Unfortunately, this 

procedure does not use all the available information. It is only possible to infer 

about performance in a specific environment for genotypes that have been tested 

in that environment. A random approach for environment and genotype-by-

environment interaction effects allows the modeling of correlation structures 

throughout their associated variance components.

The lack of clear distinction between fixed versus random effects has generated a 

huge amount of confusion and uncertainty with the mixed-model analysis. 

Statistically speaking, there is only one criterion used in modern linear model 

theory for distinguishing fixed and random effects. If the effect levels reasonably 

represent a probability distribution, then the effect is random; if, on the other 

hand, effect levels do not represent a probability distribution, then the effect is 

fixed. For fixed effects, the main objective remains the same: to estimate 

treatment means and/or test treatment differences. For random effects, in 

addition to the major focus on modeling and estimating variance or covariance 

among random factor levels, interest may sometimes be in estimation and 

statistical inference about specific levels of a random factor. Best Linear Unbiased 

Prediction (BLUP) of a random effect is a shrinkage estimator to adjust for 

uncertainty arising from its probability distribution. The BLUP is devised to 

maximize the correlation between estimates of the realized values of the random 

Classifica�on of effects as Fixed vs. Random 
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effects and the ''true'' realized values of the random effects. Based on this 

statistical criterion, some statisticians have made a pragmatic suggestion that 

there should be enough information in the data to estimate variance and 

covariance parameters of random effects with sufficient precision. It had been 

suggested that a factor should have more than 10 levels before it is considered 

random. In discussing the mixed-model analysis of regional cultivar trials. 

Researchers argued that cultivar effects should be random because selection of 

best genotypes through rankings rather than comparisons is the main goal either 

in the early ''breeding'' phase or in advanced ''evaluation'' phase. Plant breeders 

would usually consider that years and their interactions with genotypes are 

random, but debate considerably about how locations should be viewed. Part of 

the location effect would be ''fixed'' because it represents known physical 

properties (e.g., soil type of a location) or long term average (e.g., precipitation or 

other agro-climatic patterns) of the same location at some future time. However, 

the goal of most crop improvement programs is to infer future performance at 

many untested locations. Thus, it appears more appropriate that location effects 

and their interactions with genotypes should be considered as random.

These discussions may be summarized in a two-step approach for distinguishing 

fixed from random effects. The first step is to declare the factor to be random and 

consider two options (i) Is it physically possible for these particular levels of this 

factor to be repeated at some future time or in some other place? (ii) If the answer 

to (i) is yes, would it be reasonable for one to choose the same levels for repetition 

of this research at some future time or in some other place? If the answers to 

questions (i) and (ii) are both yes, the factor can be considered as fixed. The second 

step is to modify the declaration for statistical reasons. If a fixed factor is 

represented by a large number of levels (more than 10) and there is no structure 

to those levels, it may be best to declare the factor random and use BLUP to 

predict treatment mean values. The use of BLUP allows for shrinkage of the 

extreme treatment means. On the other hand, if a random factor has too few 

levels (less than 10), the estimate of the variance for this factor may be highly 

unreliable and it may be more practical to consider as fixed factor .
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One of the major impediments to appropriate use and correct interpretation of 
mixed models is the lack of understanding or appreciation of features and 
properties that mixed models offer. There are several reasons for choosing mixed 
models. The first and foremost reason is to avoid consequences of inappropriate 
models and statistical tests. While rarely recognized or acknowledged, both fixed 
and random effects are present in many commonly used experimental designs for 
field trials including randomized complete and incomplete block designs, nested 
designs, split-plot designs and repeated measures designs. Generally used 
procedure mixed would be an appropriate analysis of these designs, producing 
correct results including correct standard errors of differences between 
treatment means. However, general linear model analysis of these designs would 
often produce incorrect results. For example, general linear model may give 
erroneous denominator for F-test and incorrect SE of a treatment due to the 
presence of additional random effects and/or heterogeneous error variances. 
Thus, uncritical or inappropriate applications of general linear model, when its 
required assumptions are not supported by the data or the nature of the 
experiment may lead to unexpected or incorrect conclusions or may simply fail to 
achieve the fundamental objective of the experiment.

The second reason is that procedure mixed is better able to handle unbalanced 
data than general linear model. In the past, all general linear model users would 
face a difficult choice of which of the four types of sums of squares should be used 
for appropriate F-tests of fixed effects when analyzing an unbalanced data set. 
There is no clear-cut guideline in textbooks or user's guide to select Type I or Type 
III SS from analysed outputs. Moreover, since general linear model treats all 
effects, fixed and random, as if they were fixed, it is sometimes unable to estimate 
least squares means for unbalanced data. These problems associated with 
general linear model would disappear if procedure mixed was used. The third 
reason is that procedure mixed is able to analyze a wide variety of experimental 
designs and thus offers the flexibility of identifying the most appropriate design 
for a given research experiment. The continued trust in and use of general linear 
model analysis restricts the choice of experimental designs.  Consequently, more 
elaborate and efficient experimental designs are either inaccessible or unknown 
to the researchers because they are too complicated to be handled by general 
linear model. The fourth reason is that agricultural researchers may soon be 
required to clearly show if statistical analysis employs the correct use and 
interpretation of mixed models. Well established periodicals has a more 
stringent policy as it ''will not normally accept papers reporting the use of the 
general linear model procedure to analyze data-sets that include random effects 
or repeated measurements on the same experimental unit where the data show 
heterogeneous variances and/or unequal within subject time dependent 
correlations.'' 

Understanding mixed-model analysis
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The original intent of almost all designed experiments is to obtain a balanced data 

set, but data imbalance may arise from unforeseen circumstances. Data 

imbalance refers to having different numbers of observations in individual levels 

of a factor or combinations of levels of different factors in the experiments. 

Statistical analysis and hypothesis testing for mixed models remain valid if the 

missing-completely-at-random (MCAR) assumption is true. In other words, if the 

MCAR assumption is satisfied, then the missing data pattern is independent of 

the design. It is not always easy to determine the validity of the MCAR 

assumption. Following two examples are quite illustrative. In the first example, 

three sub-samples per plant are analyzed in the lab for a plant nutrient. A test 

tube is accidently dropped in the lab, causing missing data. Since this accident 

occurs randomly (i.e., dropping a particular test tube has nothing to do with the 

treatment or randomization units corresponding to the test tube), the MCAR 

assumption is satisfied. In the second example, a pot experiment is carried out to 

evaluate three different fertilizers. Each pot consists of 10 plants at the start of 

the experiment. One of the fertilizers has a harmful effect on some plants, causing 

them to die during the experiment. This missing data pattern does not support 

the MSCAR assumption because whether or not plants die depends on the 

treatment. With unbalanced data, general linear model produces approximate F-

statistics for tests of hypotheses. However, there are no definitive guidelines for 

selecting a particular type of sum of squares for the numerator of the F-statistics. 

General linear model analysis often is unable to provide estimates of least 

squares (LS) means, differences between LS means and estimable functions from 

the unbalanced data, and even if estimable, the standard errors of these 

estimable functions are generally undependable. Mixed model analysis based on 

the true mixed-model methodology builds the parameters for the random effects 

into the linear model through the covariance structure. Test statistics, estimates 

of fixed effects, and standard errors of the estimates are computed using the 

generalized least squares (GLS) method. For unbalanced data, it is not easy to 

determine degrees of freedom but mixed model offers several options for 

obtaining approximate degrees of freedom even for unbalance data. 

Unbalanced Data treated as  random effects
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The adoption of mixed model analyses approach especially for multi environment 

trials  data raise the considerations about variety effects as fixed or random. 

Some believe the choice depends on the aim of the analysis and consideration of 

the properties of the two types of estimation procedures, namely best linear 

unbiased prediction (BLUP) for random effects and best linear unbiased 

estimation (BLUE) for fixed effects. If the aim of the analysis is selection (that is, to 

identify the best varieties of those under consideration) then the rankings of the 

estimated variety effects are required to be as close as possible to the rankings of 

the true variety effects. In more exact terms, a set of estimates of variety effects is 

required that best predict the true effects. By definition, this implies the use of 

BLUP so that variety effects should be regarded as random. The optimality 

properties of BLUP are based on the assumption that the variance parameters in 

the model are known. In general, this is not the case and the parameters are 

estimated from the data. The only question that remains, therefore, is whether 

the estimates of the variance parameters are sufficiently precise to ensure that 

the optimality of BLUP. If the aim of the analysis is to determine the difference 

between specific pairs of varieties, then the use of BLUP as an estimation method 

is inappropriate since the BLUP of a specific difference is biased. Thus, in this case 

variety effects should be regarded as fixed. The key issue, therefore, is a clear 

definition of the aim of the analysis. In order to pursue this, common practice is 

followed with differentiating between breeding and evaluation programmes, 

although the distinction is sometimes hazy. Breeding programmes are concerned 

with the early stages of varietal evaluation  phase in which large numbers (often 

greater than 1000) of new breeding lines are grown in small numbers (usually less 

than 3) of field trials.

The 'best' lines are selected to continue to the next stage of testing, in which 

fewer lines are evaluated in more locations. The process culminates in the testing 

of a small number (usually less than 40) of elite breeding lines, together with 

commercial standard varieties, in a large number of trials that span a wide range 

of geographic locations and several growing seasons. On the basis of these trials, 

a new genotype may be recommended for commercial use on farmer fields. These 

trials  are usually the domain of crop variety evaluation programmes. It is clear 

that the aim of the analysis of breeding data is selection so that the use of random 

variety effects is appropriate. Some statisticians advocate the use of random 

effects in this setting because the varieties themselves are a random sample from 

a population. After some unspecified number of stages of selection, this ceases to 

be a reasonable assumption so that at this point variety effects are regarded as 

fixed. 

If environments or genotypes are considered random, effects may be estimated 

by BLUP. A factor is commonly taken as random if the observed levels may 

Considera�on of genotypes as fixed or random 
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reasonably be regarded as a random sample from a population. The assumption 

of a truly random sample is often debatable for both environments and 

genotypes. Nevertheless, it is frequently assumed that environments are 

random, mainly to allow inferences which are not restricted to the observed 

environments. Reports showed that assuming random genotypes may be 

preferable in terms of predictive accuracy even when genotypes would be 

considered fixed by conventional standards. 

The conventional general linear model coupled with ordinary least squares 

estimation procedures (OLS), useful as it is in many experiments in agriculture, 

are too restrictive to perform satisfactory data analyses for the typical data 

structure of most breeding programs. Error structure in “real world” experiments 

is often more complex than used in standard linear models for conventional data 

analysis. In contrast, the general linear mixed model can accommodate 

covariance structure among observations. Standard linear models usually 

assume independence. The mixed model handles these correlations with random 

effects and their associated variance components, modeling variability over and 

above the component associated with residual error. Mixed linear model 

approaches can circumvent the troublesome ANOVA for handling unbalanced 

data and complex models.

Mixed model analysis applies particularly to research involving factors with a few 

levels that usually can be controlled by the researcher (fixed) as well as factors 

with levels that are beyond the researcher's control (random). These random 

factors vary from experiment to experiment, and may be interpreted in the 

context of a symmetric probability function. Most breeding trials have some 

mixed model aspect.

The prediction value of unobserved or future performance is an important 

consideration in plant breeding. Prediction  of random variable outcomes, in 

general, is a fundamental problem in statistics. Assuming that there is a priori 

knowledge about the distribution  of the parameters defining the variable to be 

predicted, predictions are obtained by finding the posterior distribution  of the 

variable, given the data, from a Bayesian point  of view.

Besides the Bayesian approach to the prediction problem, the general mixed 

model allows prediction in a frequentist framework via the concept of conditional 

expectation without using a priori distribution. The conditional expectation of 

the random effects, given the observed data, is the BLUP  of those random 

effects, and is also a Bayes estimator under normal priors. Theoretically, BLUPs 

have the smallest mean squared error of prediction among all linear unbiased 

predictors, provided the assumed model holds and the parameters of the model 

are known.
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By specifying a normal distribution for the random effects, the estimation of the 

unknown parameters is usually obtained using likelihood-based procedures. A 

restricted maximum likelihood method (REML) is usually preferred for 

estimating the variance components in a mixed model. For unbalanced data, 

REML can offer significant advantages over ANOVA - based estimators as REML 

estimates are unique, nonnegative, and have maximum likelihood along with 

number of sample statistical properties. The asymptotic standard errors of the 

estimated variance components can be derived readily as part of the estimation 

procedure. In many plant breeding situations, a normal distribution for the data 

can be realistically assumed, so REML approaches are mostly appropriate. 

Nevertheless, REML estimates of variance components are robust to violations 

of this assumption. The REML procedure of estimating variance components 

maximizes the residual likelihood function, which is the likelihood function of a 

set of linear combinations of observed values whose expectations are zero. 

Those values are usually obtained by transforming the observations. The error 

contrasts are free of any fixed effects in the model. Thus, the residual likelihood 

function depends only on the unknown parameters that belong to the variance-

covariance structure. The maximization of this function requires numerical 

procedures. Computation may be extensive with many variance-covariance 

parameters. Over-parameterized models may be avoided by an appropriate 

experimental design in relation to the number of parameters to be estimated.

To do model selection in the mixed model framework, a log likelihood-ratio test 

criterion can be used. In statistics, the likelihood-ratio test assesses the goodness 

of fit of two competing statistical models based on the ratio of the likelihoods, 

specifically one found by maximization over the entire parameter space and 

another found after imposing some constraints. The procedure demands the 

evaluation of the restricted log-likelihood (LLR) for the reduced model (model 

with smaller number  of parameters) and for the full model (model with higher 

number  of parameters). The test criterion for the likelihood ratio test is, L = -2{ 

LLR (reduced model) - LLR (full model)}.

Under normality for the null hypothesis that the reduced model is not different 

from the full model, the likelihood ratio statistic is distributed as a chi square  with 

degrees of freedom equal to the difference in the number of parameters of both 

models. If the fixed part of the two mixed models under comparison is the same, 

the test is comparing the covariance structure models. 

REML for BLUP 
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Linear mixed models have been  very well  recognized and widely used for 

analyzing METs data. These models are especially useful in the analysis of 

incomplete data complex variance-covariance structures for describing the G×E 

interaction effects. 

The most realistic one is unstructured (UN) variance-covariance matrix. This 

variance-covariance matrix is the most liberal. Each variance or covariance in the 

matrix is different and is estimated uniquely from the data. The disadvantage of 

the UN structure in comparison to other structures is the large number of 

parameters to estimate. This can contribute to complexity of numerical 

calculations. 

On the other end of the spectrum, the compound symmetry (CS) structure, which 

is the most restrictive variance-covariance matrix for linear mixed model. This 

structure assumes equal variances and equal covariances.

Recently, researchers more and more often suggest using factor-analytic (FA) 

structure for the METs data. That variance-covariance matrix also offers the 

flexibility comparable to the UN structure but with a lower number of 

parameters to estimate. 

Factor analysis is concerned with identifying the common factors which give rise 

to correlations between variables. This involves fitting a latent variable model. In 

contrast, principal component analysis aims at identifying factors which explain a 

maximum amount of variation, and does not imply any underlying model. FA 

model can be regarded as the mixed model equivalent of the additive main effects 

and multiplicative interaction model with similar fixed-effects as genotype main 

effects and G×E interaction effects. AMMI model is based on principal 

components analysis via singular value decomposition, the factor-analytic model 

is based on factor analysis with a Cholesky factorization. The factor-analytic 

model depends on the decomposition of an unstructured variance-covariance 

matrix. In case of the analysis of the METs data with linear mixed models, it is 

always recommended to carry out a comparison of the models with different 

variance-covariance structures first. The second step is to use the selected model 

for proper analysis and evaluation of the cultivars. More recently, direct 

estimation enforcing a FA structure has been proposed and suitable algorithms 

for both restricted maximum likelihood (REML) and Bayesian estimation have 

been described, and mixed model software packages available, such as ASReml or 

WOMBAT, readily accommodate such analyses. The underlying concept is that 

only the most important principal components or common factors need to be 

estimated, while those explaining little variation can be ignored with negligible 

loss of information. This reduces the number of parameters to be estimated and 

thus sampling errors. Provided any bias due to the factors that are ignored is 

relatively small, this is also expected to reduce mean square errors. Furthermore, 

Procedures  to find BLUP’s

10



eliminating unnecessary parameters is likely to make estimation more stable and 

efficient. For instance, omitting factors with corresponding eigen values close to 

zero reduces problems associated with estimates at the boundary of the 

parameter space, and can improve convergence rates in iterative estimation 

schemes. Factor analytic models, which separate genetic effects into common 

and specific components, provide a natural framework for modeling G × E 

interaction and related problems. Moreover, these models can substantially 

reduce computational requirements of mixed model analyses compared to 

standard multivariate models, both in variance component estimation and 

genetic evaluation schemes.

Number of  studies have evaluated the models with different variance-

covariance structures (including FA) and concluded that the FA variance 

covariance structure is more accurate than the classical ANOVA and numerically 

less complicated than the UN structure.

The popular method used to choose the best variance- covariance structure is 

based on information criteria, such as Akaike's information criterion (AIC) or 

Bayesian information criterion (BIC). It depends on evaluating the predictive 

accuracy of the effects. AIC is a commonly used criterion to choose the best 

variance-covariance structure in linear mixed model for METs. The AIC was 

obtained using the following formula: AIC = –2 × Log L + 2p, where Log L is the 

logarithm of maximum restricted likelihood of the model; and p is the number of 

estimated variance-covariance parameters in the model. The smaller AIC values, 

the better fit of the variance covariance structure. The expression “–2 × LogL” is 

called “deviance” and is also used in calculating other information criteria (e.g. 

BIC) and likelihood ratio tests. 
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Traditionally in usual coordinated system, the performance of a new genotypes 

at each site-year has been expressed as a percentage of a chosen “check” cultivar 

(or the average of several chosen check cultivars), and then relatively simplistic 

statistical analyses are conducted on this % of check data. This approach has 

been followed very long for testing of genotypes for several crops. In contrast,  

the results of genotypes yield as actual values. Individual site-year yield data is 

presented in publications as a summary column based on overall arithmetic mean 

from  number of years of testing and presented for each genotype. The relatively 

small number of years of testing reflected in this overall arithmetic mean could be 

problematic, in that results from an anomalously high or low yield-year could 

substantially skew the calculated arithmetic mean and possibly reduce the 

accuracy of crop genotype yield rankings. The check cultivar in the traditional 

crop MET is grown at all site-years and “occupies” one of a limited number of 

entries in MET (potential entries in MET obviously are limited due to resource 

constraints). The rationale underlying this traditional statistical approach was to 

minimize the influences of location and year  on the ultimate ranking of genotype 

performance.

A complicating factor in the statistical analysis of MET data is that long term, 

multi-year data tends to be highly unbalanced – that is, not all genotypes are 

present in all trials in all years. This is understandable as genotypes are 

introduced, evaluated for several years at a number of sites, and then replaced in 

the trials by newer genotypes. Expressing genotype performance at each site as a 

percentage of a long term check cultivar essentially ignores the statistical 

complications arising from a highly unbalanced data set.

This traditional statistical approach using a check cultivar has several drawbacks: 

(1) Identification and selection of an appropriate, representative check cultivar 

may be problematic. The identification and selection of an appropriate check 

cultivar is usually undertaken by a committee of “experts” after consideration of 

existing information. One of the considerations is the “popularity” of the check 

cultivar, or how widely grown. However, this process may still be considered at 

least somewhat arbitrary, and the selected check cultivar may prove to be 

unrepresentative / deficient in certain environments. (2) Over time with 

continual breeding efforts and introduction of new genotypes, the check cultivar 

may become unrepresentative and inappropriate, and a new check cultivar will 

need to be chosen. Since MET data has been expressed as a % of check, changing 

the check makes valid comparisons to historical data very difficult – essentially 

the percentage based historical database is rendered useless. (3) In certain years 

over the majority of trial locations, the check cultivar may perform quite 

Change in wheat genotypes as compared  to checks
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differently than its long term average. For example, this may occur if the check 

cultivar is susceptible to a specific disease that is exacerbated by weather 

experienced during the growing season. Newer genotypes in the MET may be 

resistant or partially resistant to this disease, and this anomalous performance of 

the check cultivar may lead to predictions of superior newer genotype 

performance that will not be achieved in the long term. Because newer 

genotypes are often only evaluated for two or three years in MET, this check 

under-performance in a specific year can substantially influence predicted 

genotype performance. 

As an alternative to the traditional genotype MET statistical approach using % of 

check data and relatively simple analysis, linear mixed model analysis had been 

applied to MET data from mid-1990's onward. Mixed model analysis has a much 

greater capability to accommodate highly unbalanced data as compared to 

traditional ANOVA procedures. The use of mixed model analysis with actual yield 

data has resulted in genotype performance predictions that are more realistic, 

and farmers are able to harvest substantially lower than those predicted by MET 

results. Furthermore, an additional advantage to using actual yield data is that a 

long-term check cultivar in MET is not required which opens up an entry “slot” in 

the trials reducing the cost associated with growing the same check cultivar in 

multi-site trials year after year.
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 Multi-environment trials are essential, due to the presence of genotype x 

environment interaction, as genotypes respond in differently to variable 

environmental conditions. GxE interaction reduces the overall progress from 

selection process confined to any one environment and decreases the response 

to selection for average genetic performance due to the difficulty in selecting the 

best-performing and most stable genotypes. Multi-environment trial data are 

commonly analyzed using linear mixed models in either one-stage or two-stage 

analyses. A one-stage analysis is usually considered the gold standard, as it is 

more efficient than a two-stage analysis. However, it is computationally 

expensive when applied to analyze many environments, especially when 

different types of models are needed to characterize variability for each of 

individual environment. 

In contrast, a two-stage analysis is computationally efficient and can handle a 

larger amount of data or more complex models as compared to one-stage 

analysis. A two-stage analysis can be used to model any specific randomization 

layout and within-environment error for each individual environment in the first 

stage, then use the adjusted genotype mean for the across-environment at 

second-stage of analysis. In the analysis of plant breeding MET data, a spatial 

model is usually fitted for each environment to produce a spatially adjusted 

genotype mean in each environment. The spatially adjusted genotype means are 

then combined as the data for the second stage, across-environment analysis. 

The loss of efficiency in a two-stage analysis is reduced by weighting the adjusted 

means according to the predicted accuracy of the value in the individual 

environment analysis.

All the genotypes in the same field are normally grown under the same field 

management, although genotypes are from different sets, so an overall 

experimental design that minimizes the estimated error within a field should be 

used. Moreover, a spatial analysis for a field can be conducted using all available 

data in that field. For annual crops, genotype performance is usually evaluated on 

a single phase and single cycle of data across locations, hence a single-year 

analysis. The results from the analysis of any single year's data have been shown 

to overestimate the genotypic variance.

 

One/two stages of analysis for coordinatated system
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Three different methods were used to find yield increases in cereal crops. The 

first one is based on the use of historical data on annual production at the level of 

country, state or region; it provides a measure of production increase but does 

not indicate proportion attributable to genetic gain, as the farm yield is 

influenced by several non-genetic factors like fertilizer, irrigation, protection 

against stresses and the intensity of other crop management practices adopted.

The second method is to use the historical set of data on performance of 

genotypes in national or international trials to derive the genetic gain achieved in 

yield. The third method to estimate genetic yield gain is to conduct yield trials 

with an array of generated breeding lines and cultivars, checks or standards 

using a set of standardized agronomical practices. These trials are often 

restricted to experiments for a few seasons and years, and ignore the effects of a 

wide range of environmental conditions and ever-changing crop production 

practices used in testing older genotypes. Retrospective physiology on genetic 

progress in tropical rice is also hampered by concerns over the validity of side-

by-side comparisons of historic sets of cultivars. This publication is limited to 

BLUP analysis of coordinated wheat trials carried out at different centers for 

major wheat growing zones of the country. 

During the time period 2008-09 to 2017-18,  as many as 1336 promising 

genotypes were evaluated across major locations of country for wheat crop 

under coordinated system. Nearly 425 check varieties were considered in multi 

environmental tests (METs) at coordinated centers. Data sets on wheat yield of 

genotypes and checks in irrigated timely sown, irrigated late sown, restricted 

irrigated and rained conditions were analysed as per BLUP/REML procedures. 

These advanced varietal trials were performed at major locations in 05 zones for 

wheat cultivation. The same research field trials were laid out in same zone along 

with recommended crop management practices to harvest good yield. Individual 

trial data were scrutinized and analysed and data from experiments or locations  

registered more than  20% of coefficient of variation (CV) were rejected. 

Estimation of the variance parameters carried out by using residual maximum 

likelihood (REML) along with estimation / prediction of the fixed as well as 

random effects. Quite popular and widely cited ASReml-R  package was 

exploited to fit models which uses the average information algorithm for REML 

estimation of variance parameters. The implementation for FA models in 

ASReml-R package handles the situations of where rank of interaction matrix is 

of less than full rank.

Under coordinated system g genotypes are evaluated in e environments and 

analysed as per model

yijk = m + ti + dj  + (td)ij  + g  (d) jk+ eijk
	

Approaches to highlight genotypes performance 
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yijk  yield of k 

replication 

of ith 

genotype  in 

j 

environment

m  overall 

mean
 

ti  Effect of 

genotype
 

dj  Effect of 

environment
 

(td)ij  Interaction 

effect
 

g

(d) 

jk

Effect of k-

th 

replication 

in j-th 

environment

eijk
Random 

error

i= 1,2,3,…g; j=1,2,3,…e; k=1,2,3,…r

Possible three versions of equation are : (i) Random model with all effects being 

random except µ ;(ii) fixed model with all effects being fixed except  

(iii) mixed model with genotypic effect is fixed whereas the others are random. 

When it is considered that the genotypic effect is fixed and the environmental 

effect is random,  and  i  are fixed effects whiles                                   are independently 

and normally distributed with zero mean and variances

respectively.  

The basic idea is to estimate the effects in the linear model and then to weight 

some or all of the effects by an estimate of the pattern-to-noise ratio associated 

with the respective effect. The BLUPs of the ij-th cell means from a balanced data 

set is

g (d) jk  and eijk ; 

dj , (td)ij g (d) jk

s2 
d , s2 

dt and s2  
g(d) s2

e

BLUP(mij) = BLUE(mi) + BLUP(dj) + BLUP[(td)ij]  

BLUE(mi) = Mean of the i-th genotype(Ӯi..),
 

BLUP(dj) =

 

rgσd
2

 

E MS d
(Ӯ.j.─Ӯ…)

 

BLUP[(td)ij] =

  

rσtd
2

E(MS d)
(Ӯ─.j.

 

Ӯ…)  +   
rσtd

2

E(MS td)

 

(Ӯij.─Ӯi..─Ӯ.J.+Ӯ…)         

 E(MSd)=

  

σe
2+

 

gσ
y d

 

2

   

+

   

rσtd
2

   

+

  

rgσ
d
2

   

and  

 E (MStd)  =

 

σe
2

  

+

   

rσtd
2

 

.  

 
E (MSd) & E(MStd) :  Expected mean squares for  environment and GxE interaction 

BLUP (mij) = Ӯi..+ɦd

 

(Ӯ.j.─Ӯ…) +ɦtd(Ӯij.─Ӯi..─Ӯ.j.+Ӯ…)

 

ɦd

 

=[rgσ
d
2

 

+ rσtd
2 ] /(MSd) &  ɦtd

 

=  rσtd
2

 

/ (MStd) : shrinkage factor  for  environment and  GxE 

interaction
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Advantages of BLUP over BLUE had 

been established in research studies, so 

B L U P  o f  w h e a t  g e n o t y p e s  w e r e 

estimated over the years to highlight 

the increase in wheat production in all 

major wheat growing zones of the 

c o u n t r y.  A l l  I n d i a  C o o r d i n a t e d 

Research Project on Wheat and Barley 

( A I C R P )  i s  c o o r d i n a t i n g 

multidisciplinary and multi location 

testing of varietal, newly developed 

i m p r o v e d  g e n o t y p e s ,  c r o p 

management and crop protection 

t e c h n o l o g i e s  a c r o s s  t h e  d i ve r s e 

e c o s y s t e m s  f o r  i n c r e a s i n g  a n d 

stabilizing the wheat production. As a 

nodal agency for wheat research of the country, ICAR-IIWBR facilitates planning, 

exchange of experimental material, monitoring the field trials / nurseries, data 

compilation and documentation. Presently, there are 29 funded centres and more 

than 100 voluntary centres that are carrying out the very systematic planned 

activities of different production conditions of the five agro-ecological zones of 

the country .

BLUP of wheat genotypes :  Zone wise analysis 

17

Total wheat genotypes and checks evaluated under coordinated system across zones



Zone wheat  Area Covered   Funded centres  Non Funded centres
area (mha)

NHZ
(0.82 )

Western Himalayan regions 
of J&K (except Jammu and 
Kathua distt.); H.P. (except 
Una and Paonta Valley); 
Uttaranchal (except Tarai 
area); Sikkim and hills of 
West Bengal and N.E. States

CSK-HPKVV, Palampur
CSK-HPKVV, Bajaura
CAU, Imphal
SKUAST-K, Srinagar

Himachal Pradesh -  Bajaura, Kangra, 
Bara, Kukumseri, Berthin, Akrot, 
Dhaulakuan, UNA KVK, Shimla
U�arakhand -  Almora
Manipur – Imphal
Jammu & Kashmir  –  Khudwani , 
Wadura

NWPZ
 (12.33 )

Punjab, Haryana, Delhi, 
Rajasthan (except Kota and 
Udaipur divisions) and 
Western UP (except Jhansi 
division), parts of J&K 
(Jammu and Kathua distt.) 
and parts of HP (Una dist. 
And Paonta valley) and 
Uttaranchal (Tarai region)

PAU, Ludhiana
CCSHAU, Hisar
GBPUAT, Pantnagar
RAU, Durgapura
SKUAST-J, Jammu

Haryana – Bawal, Rohtak, Hisar, 
CSSRI, Karnal
U�arakhand -  RRS,Majhera, 
Pantnagar , KVK, Dhakrani, Sugarcane 
Research centre, Kashipur, Pantnagar
Punjab –Gurdaspur, Bathinda, 
Faridkot, Kapurthala, Balachaur, 
Rauni, Muktsar
New Delhi  - IARI, New Delhi
U�ar Pradesh -  Bulandshahr, Pilibhit 
(New), Sahajahanpur, Nagina , Ujhani, 
KVK-Rampur, Deegh, Araul, Bareilly, 
Agra
Jammu & Kashmir –Rajouri
Rajasthan –Tabiji, Navgaon, Alwar, 
Diggi, Sri Ganganagar

NEPZ
(8.85) 

Eastern UP, Bihar, Jharkhand, 
Orissa, West Bengal, Assam 
and plains of NE States

CSAUAT, Kanpur
NDUAT, Faizabad
BHU, Varanasi
BAU, Sabour
BAU, Ranchi
BCKVV, Kalyani
UBKV, Coochbehar
AAU, Shillongani

Assam –Shillongani
U�ar Pradesh –Varanasi, Kanpur, 
Faizabad, Chandauli, Ghaghraghat, 
Mirzapur, Ghazipur, KVK – Amethi 
(New), KVK – Basti, KVK – 
Mahrajganj, Gorakhpur, Agra
West Bengal – Kalyani, Burdwan, 
Coochbehar, Kharibari, Malda, 
Manikchak, Majhian, Kalimpong
Bihar- Sabour, Purnea, Banka, 
Rohtash, IARI, RS, Pusa, ICAR, 
Research Complex , Eastern Region, 
Patna
Jharkhand –Ranchi, Dhumka, Chianki, 
Gumla

CZ 
(6.84 )

Madhya Pradesh, 
Chhattisgarh, Gujarat, Kota 
and Udaipur divisions of 
Rajasthan and Jhansi division 
of Uttar Pradesh

IGKVV, Bilaspur
SDAU, Vijapur
JAU, Junagarh
MPUAT, Udaipur
JNKVV, Jabalpur
JNKVV, Sagar
JNKVV, Powerkhera
RVSKVV, Gwalior

Gujarat –Vijapur, SK Nagar, Anand, 
Amreli, Junagarh, Sanosara, Bardoli
Madhya Pradesh –Gwalior, Jabalpur, 
Powarkheda, Indore, Bhopal, Sagar, 
Shahdol, Ujjain, Ratlam, Morena, 
Tikamgarh, Rewa
Chha�sgarh – Bilaspur, Ambikapur, 
Jagdalpur, NIBSM- Raipur, IGKVV- 
Raipur
Rajasthan – Kota, Udaipur, Banswara, 
Mandor

PZ 
(0.71)

Maharashtra, Karnataka, 
Andhra Pradesh, Goa, plains 
of Tamil Nadu Hilly areas of 
Tamil Nadu and Kerala 
comprising the Nilgiri and 
Palni hills of southern 
plateau.

UAS, Dharwad
MPKVV, Niphad
MPKVV, 
Mahabaleshwar
ARI, Pune

Maharashtra - Rahuri, Niphad, 
Mahableshwar, Karad, Kolhapur, 
Pune, Akola, Washim, Parbhani
Karnataka -  Dharwad, Arbhavi, 
Kalloli, Nippani, Mudhol, Bagalkot, 
Bailhongal
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Wheat is cultivated in the hills at different altitude under various crop rotations 

adapted at different elevations. In NHZ, sowing is generally done under rainfed 

conditions in months of October/November with residual moisture and 

harvesting takes place in May/June months of the year. In higher hills of Leh (J&K) 

and Lahaul and Spiti ( HP), the winter is severe, causing the crop is to be raised at 

congenial weather between May to September. Development of high yielding 

varieties for moisture stress condition is the major objective of wheat 

improvement programmes in NHZ. Region encompasses the hilly terrain of 

Northern region extending from Jammu & Kashmir to North Eastern States. The 

NHZ comprises J&K (except Jammu and Kathua distt.); Himachal Pradesh 

(except Una and Paonta Valley); Uttarakhand (except Tarai area); Sikkim, hills of 

West Bengal and North Eastern states (Figure 1). The wheat grown in the NHZ 

generally has productivity of 15-16 q/ha. Moisture stress is the major factor 

responsible for low productivity besides soil fertility, soil depth, frost damage, 

small and fragmented holdings, low and imbalanced use of fertilizers. High 

incidences of weeds and diseases, particularly yellow rust, brown rust and loose 

smut etc. are the other factors that limit the productivity. 

	

Northern Hills Zone 
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Figure	2:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	�mely	sown	condi�ons

Source SS MSS F value Pr > F Root MSE R-Square Coeff Var Std Error t  value Pr > |t|

Model 92.19014 92.19014 6.84 0.0133 3.67051 0.1717 8.08448   

Error 444.59620 13.47261        

Total 536.78634         

Parameter  Estimates         

Intercept        1.38732 30.39 <.0001

Year        0.31021 2.62 0.0133

Table	1:	ANOVA	for	irrigated	�mely	sown	condi�ons
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Figure	3		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	irrigated	�mely	sown	

Source SS MSS F Value Pr > F Root MSE R-Square Coeff Var Std Error t Value Pr > |t|

Model 51.72836 51.72836 3.56 0.0680 3.81224 0.0974 12.32533   

Error 479.59523 14.53319        

Total 531.32359         

Parameter  Estimates         

Intercept        1.44089 19.78 <.0001

Year        0.32219 1.89 0.0680

Table	2:	ANOVA	for	restricted	irrigated	late	sown	condi�ons

Figure	4:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	late	sown	condi�ons
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Figure	5:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	irrigated	late	sown

Source SS MSS F value Pr > F Root MSE R-Square Coeff Var Std Error t Value Pr > |t|

Model 597.85537 597.85537 29.67 <.0001 4.48904 0.4734 15.95091   

Error 664.99925 20.15149        

Total 1262.85462         

Parameter  Estimates         

Intercept        1.69670 11.72 <.0001

Year        0.37939 5.45 <.0001

Table	2:	ANOVA	for	rainfed		�mely	sown	condi�ons

Figure	6:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	rainfed	�mely	sown	condi�ons
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Figure	7:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	rainfed	�mely	sown

Highly significant change in wheat production had been observed during the 

studied time period span for irrigated timely sown, late sown and rainfed timely 

sown conditions trials in Hilly Zone of country as reflected in ANOVA tables (1,2 

and 3). Highly significant values of intercept for three conditions along with 

highly significant slope for rainfed timely sown conditions observed. Significant 

values of slope for irrigated timely and late sown conditions also seen.

Scatter plots of BLUP's of wheat production versus year were plotted to examine 
2the coefficient of determination (R ) and linear trend for assessing progress in 

wheat production for irrigated timely, irrigated late & rainfed timely sown 

conditions. Regression analysis for production revealed that under rainfed 
2timely-sown condition, the R  value was highly significant (P<0.01). Under the 

rain fed timely-sown conditions, area under cultivations had decreased in zone 

so trials were discontinued for 2015-16, 2016-17 years though yield 

improvement was highly significant. Advanced varietal trials were also 

discontinued for 2015-16 and 2016-17 due to shortage of promising genotypes 

to next levels.  Significant improvement was also visible in rainfed timely-sown 

conditions of the zone.  
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Linear trend in the year-wise wheat production in different conditions revealed 

an increase in average production of promising genotypes in zone by the end of 

2015. The production figures elevated to the level of 53q/ha (Fig. 2) for irrigated 

timely, of 30q/ha (Fig. 4) for irrigated late sown and 36q/ha (Fig. 6) for rainfed 

timely sown trials. However, in 2008-09, average production was 46q/ha 41q/ha 

20q/ha and by the end of period  0.81, 0.61 and 2.06 quintal yield respectively 

could be added in subsequent trials. Although highest yield levels of 53 q/ha 

(2014-15), 38 q/ha (2010-11) and 38 q/ha (2013-14) were obtained in irrigated 
2timely, late and rainfed timely sown trials but low values of R   for irrigated timely 

and late sown conditions suggested  high variability in production values. More 

over consistent improvement observed in rainfed timely sown trials as justified 
2by highly significant value of R .

Study revealed that during studied period of seven years the  wheat production 

had  progressed nicely in this zone. Fitted straight-line equations by SAS 

software displayed in corresponding figures  indicate that the linear growth was 

observed under all sown conditions of the zone. During the year 2008-09, the 

base yield level was 4216, 2849 and 1987 kg/ha respectively (as reflected by 

intercept of the equation). Rainfed sown conditions of the zone expressed 
2significant yield increase over years (R =0.4734**) was registered and the linear 

trend was noticed from the base yield level of 1987 kg/ha with annual increment 

of 206 kg/ha. Comparatively large values of CV reflected consistent yield 

improvement under rainfed timely conditions as compared to other considered 

situations. BLUP analyses of wheat trials showed continuous increase in the 

grain yield of the genotypes developed by Indian coordinated Wheat Program. 

This finding also corroborates with studies on coordinated wheat production 

estimated by BLUE approach . More over in present study FA structure of the 

variance–covariance matrix of GxE was considered to estimate the BLUP of 

wheat yield.

24



This zone consists of the parts of sub-humid Sutlej-Ganga Alluvial Plains and arid 

western plains, which comprises Punjab, Haryana, Delhi, Rajasthan (except Kota 

and Udaipur divisions), Western Uttar Pradesh (except Jhansi division and hilly 

areas), parts of Jammu and Kashmir (Jammu and Kathua districts) and parts of 

Himachal Pradesh (Paonta Valley and Una districts).Wheat is cultivated for three 

broad cultural conditions, viz timely sown irrigated, late sown irrigated and 

timely sown restricted irrigation in major wheat zone. The experimental design 

was randomized blocks in three replicates. The advanced varietal trials under 

irrigated timely and late sown with restricted irrigated timely sown conditions 

were considered during the period 2012-13 to 2017-18 growing seasons in the 

major locations of the zone. 

	

North Western Plains Zone
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Source SS MSS F value Pr > F Root MSE R-Square CV Std Error t  value Pr > |t|

Model 54.21 54.21 9.11 0.0041 2.4395 0.1653 4.5359   

Error 273.76 5.95        

Total 327.97         

Parameter  Estimates         

Intercept        0.8029 64.27 <.0001

Year        0.2062 3.02 0.0041

Table	1:	ANOVA	for	irrigated	�mely	sown	condi�ons

Figure	1:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	irrigated	�mely	sown	condi�ons
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Figure	2:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	irrigated	�mely	sown

Source SS MSS F Value Pr > F Root MSE R-Square CV Std Error t Value Pr > |t|

Model 87.58 87.58 17.92 0.0002 2.2105 0.3452 4.8553   

Error 166.15 4.89        

Total 253.73         

Parameter  Estimates         

Intercept        0.8402 50.39 <.0001

Year        0.2157 4.23 0.0002

Table	2:	ANOVA	for	irrigated	late	sown	condi�ons

Figure	3:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	irrigated	late	sown	condi�ons
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Figure	4:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	irrigated	late	sown

Source SS MSS F value Pr > F Root MSE R-Square CV Std Error t Value Pr > |t|

Model 0.17 0.17 0.03 0.8668 2.4130 0.0010 5.2694   

Error 163.03 5.82        

Total 163.19         

Parameter  Estimates         

Intercept        1.0046 45.43 <.0001

Year        0.2579 0.17 0.8668

Table	3:	ANOVA	for	restricted	irrigated	�mely	sown	condi�ons

Figure	5:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	restricted	irrigated	
																�mely	sown	condi�ons
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Figure	6:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	restricted	irrigated	�mely	sown

Highly significant change in wheat production had been observed during the 

studied period for irrigated timely, late sown and restricted irrigated timely sown 

trials in a major wheat producing zone of the country as reflected in ANOVA 

tables (1, 2 and 3). Large values of F-test statistic observed for irrigated timely 

and late sown conditions though corresponding small value seen for restricted 

irrigation timely sown trials. Significant values of intercept at 0.01 % for first two 

conditions along with significant value for third condition. More over significant 

values ( at P< 0.005) of slope for linear trend exhibited by irrigated timely and late 

sown trials with significant change at large values of probability for remaining 

condition. Desirable small value of CV had been portrayed by irrigated timely and 

late sown trials as compared to large value for restricted irrigated condition. 

Similar observations were recorded for root mean square error values. More or 

less same trend were seen for standard error for year as dependent factor.

Scatter plots of BLUP's of promising genotypes over the years were plotted to 
2examine the coefficient of determination (R ) and linear trend to assess progress 

in wheat production for irrigated timely, late & restricted irrigated timely sown 

conditions. Regression analysis for production revealed that under irrigated 
2timely as well as late sown condition, R  values were highly significant (P<0.01). 

2Under the restricted irrigated timely-sown conditions, small value of R  had seen. 
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Linear trend in the year-wise wheat production in different conditions revealed 

an increase in average production of promising genotypes in zone by the end of 

2017-18. Production figures elevated to the level of 57q/ha (Fig. 2) for irrigated 

timely, of 50q/ha (Fig. 4) for irrigated late sown and 49q/ha (Fig. 6) for restricted 

irrigated timely sown trials. However, in 2012-13, average production was 

51.6q/ha 42.3q/ha 45.6q/ha and by the end of period  0.62, 0.91 and 0.04 quintal 

yield could be added in subsequent trials respectively. Although highest yield 

levels of 58 q/ha (2016-17), 51 q/ha (2016-17) and lowest level nearly 40 q/ha 

(2014-15) were obtained in irrigated timely, late and restricted irrigated timely 

sown trials. Low values of CV for irrigated timely and late sown conditions 

suggested consistent improvement in production levels. More over erratic ups 

and down observed in restricted irrigated timely sown trials.

Study revealed that during studied period wheat production had progressed 

nicely in this bigger zone. Fitted straight-line trends by SAS software displayed in 

corresponding figures indicate that the linear growth was observed under all 

sown conditions of the zone. During the year 2008-09, the base yield level was 

5160, 4233 and 4564 kg/ha respectively (as reflected by intercept of the 

equation). Restricted irrigated conditions of the zone expressed least yield 
2increase over years with small values of R . BLUP analyses of wheat trials showed 

continuous increase in the grain yield of the genotypes developed by Indian 

coordinated Wheat Program. 
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This zone of India comprises eastern Uttar Pradesh, Bihar, Jharkhand, Assam and 

plains of West Bengal. Wheat is cultivated under highly diverse situations in 

around 8 million ha area. Among different wheat growing zones, this zone 

occupies 27% of total wheat area and accounts for 22% of the total wheat 

production in the country. The average productivity in the NEPZ hovers around 

20-21q//ha which is far lower than the national productivity of 30 q/ha 

registering a yield gap of around 30-35%. 

North Eastern Plains Zone
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Source Sum of   Mean  F Value Pr > F R-Square Root  CV Stand t Value Pr > |t|

 Squares Square   MSE  Error

Model 150.36848 150.36848 35.38 <.0001 0.4514 2.06149 4.68676   

Error 182.73828 4.24973        

Total 333.10676         

Parameter  Estimates         

Intercept        0.62979 64.65 <.0001

Year        0.10307 5.95 <.0001

Table	1:	ANOVA	for	irrigated	�mely	sown	condi�ons

Figure	2:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	�mely	sown	condi�ons

Figure	3.	Regression	analysis	of	BLUP’s	of	promising	genotypes	for	irrigated	�mely	sown	condi�ons
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Source Sum of Mean F Value Pr > F R-Square Root  CV Stand t Value Pr > |t|

 Squares Square    MSE  Error 

Model 32.46775 32.46775 19.29 0.0001 0.4079 1.29747 3.36736   

Error 47.13620 1.68344        

Total 79.60395         

Parameter  Estimates         

Intercept        0.54018 67.38 <.0001

Year        0.13871 4.39 0.0001

Table	2:	ANOVA	for	irrigated	late	sown	condi�ons

Figure	4:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	late	sown	condi�ons

Figure	5.	Regression	analysis	of	BLUP’s	of	promising	genotypes	for	irrigated	late	sown	condi�ons

33



Highly significant change in wheat production had been observed for irrigated 

timely sown and late sown conditions trials in north eastern plains zone of 

country as reflected in ANOVA tables 1 and 2. Significance of intercept and slope 

had been reflected in tables for both the conditions.

Year wise BLUP's of wheat production was plotted against the years to examine 
2the coefficient of determination (R ) as well as linear trend to assess progress in 

wheat production for irrigated timely and late sown conditions. Regression 
2analysis was applied to same data to test significance level of the R  value which 

was same as recorded in the linear trend line. Regression analysis for production 

revealed that under irrigated timely and late sown conditions, highly significant 
2values of the R  expressed by data sets. More over due to decrease in area under 

cultivation for  late-sown conditions in this zone, trials were discontinued for 

recent years though yield improvement was highly significant. 

Linear trend in the wheat production under both conditions revealed an increase 

in average production of promising genotypes in this important zone comprising 

of fertile indo-gangetic plains. The production figures elevated to the level of 

46q/ha (Fig. 2) and  of 39q/ha (Fig. 4).  However, in 2008-09, average production 

was 38q/ha and 36q/ha.  By the end of period, 0.61, and 0.60 quintal yield 

respectively could be added in subsequent trials. Although highest yield levels of 

48 q/ha (2012-13), and 42 q/ha (2012-13) were obtained in irrigated timely, late 

sown trials but low of values CV justified variable nature of production.

Findings of study confirmed an increase in  wheat production of zone in nice 

manner. Fitted straight-line equations by SAS software indicate that the linear 

growth was observed under both conditions of zone. During the year 2008-09, 

the base yield level was 4071 and 3639 Kg/ha respectively (intercept of the 

equation). The straight line equation depicted the linear trend in yield growth 

over years and the equations also fitted very well as significant values of 
2R =0.45** & 0.41**  with corresponding low values of CV i.e. 4.68 and 3.36.
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Madhya Pradesh, Chhattisgarh, Gujarat, Rajasthan (Kota and Udaipur divisions) 

and Jhansi division of Uttar Pradesh are major constituents of Central Zone. This 

zone is known for premium quality wheat having typically hard lustrous grains 

with high gluten strength. The advanced varietal trials under irrigated timely 

sown, late sown, restricted irrigated trials were conducted during the period 

2008-09 to 2017-18 at the major locations of this zone. 

Central Zone
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Source Sum of Mean F Value Pr > F R-Square Root  CV Stand t Value Pr > |t|

 Squares Square    MSE  Error 

Model 78.78223 78.78223 13.28 0.0007 0.2359 2.43577 4.73322   

Error 255.11761 5.93297        

Total 333.89984         

Parameter  Estimates         

Intercept        0.76277 64.26 <.0001

Year        0.13124 3.64 0.0007

Table	1:	ANOVA	for	irrigated	�mely	sown	condi�ons

Figure	2.	Best	linear	unbiased	predictors	of	promising	genotypes	for	irrigated	�mely	sown	condi�on

Figure	3.	Regression	analysis	of	BLUP’s	of	promising	genotypes	for	irrigated	�mely	sown	condi�ons
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Source Sum of Mean F Value Pr > F R-Square Root  CV Stand t Value Pr > |t|

 Squares Square    MSE  Error 

Model 59.24885 59.24885 9.10 0.0049 0.2162 2.55143 5.83520   

Error 214.82367 6.50981          

Total 274.07252            

Parameter  Estimates         

Intercept        0.96435 42.64 <.0001

Year        0.21564 3.02 0.0049

Table	2:	ANOVA	for	irrigated	late	sown	condi�ons

Figure	4.	Best	linear	unbiased	predictors	of	promising	genotypes	for	irrigated	late	sown	condi�on

Figure	5.	Regression	analysis	of	BLUP’s	of	promising	genotypes	for	irrigated	late	sown	condi�ons
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Source Sum of Mean F Value Pr > F R-Square Root  CV Stand t Value Pr > |t|

 Squares Square    MSE  Error 

Model 1124.75865 1124.75865 75.41 <.0001 0.6649 3.86196 11.74239   

Error 566.75984 14.91473          

Total 1691.51849            

Parameter  Estimates         

Intercept        1.18685 20.26 <.0001

Year        0.20354 8.68 <.0001

Table	3:	ANOVA	for	restricted	irrigated	�mely	sown	condi�ons

Figure	6.	Best	linear	unbiased	predictors	of	promising	genotypes	for	restricted	irrigated	�mely	sown	condi�on

Figure	7.	Regression	analysis	of	BLUP’s	of	promising	genotypes	for	restricted	irrigated	�mely	sown	condi�ons
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Highly significant change in wheat production had been observed during the last 

ten years span for irrigated timely sown, late sown and restricted irrigated timely 

sown trials in Central Zone of country as reflected in ANOVA tables (1, 2 and 3). 

Significance of intercept and slope of linear model had been reflected in tables 

for three conditions.

Year wise BLUP's of wheat production was plotted against the years to examine 
2the coefficient of determination (R ) and linear trend for assessing progress in 

wheat production for irrigated timely, irrigated late & restricted irrigated timely 

sown conditions. Regression analysis was applied to same data to test 
2significance level of the R  value which was same as recorded in the linear trend 

line. Regression analysis for production revealed that under restricted irrigated 
2timely-sown condition, the R  value was highly significant (P<0.01) and 

significant for irrigated late sown trials (Table 3). Under the late-sown conditions, 

area under cultivations had decreased in zone so trials were discontinued for 

further years though yield improvement was highly significant. Significant 

improvement was also visible in restricted timely-sown conditions of the zone.  

Linear trend in the year-wise wheat production in different conditions revealed 

an increase in average production of promising genotypes in zone and by the end 

of 2018. The production figures elevated to the level of 52q/ha (Fig. 2) in irrigated 

timely sown, of 48q/ha (Fig. 4) under irrigated late sown and of 39q/ha (Fig. 6) for 

restricted irrigation under timely sown. However, in 2008-09, average 

production was 46, 41 and 20q/ha respectively and by the end of 2018, 0.48, 0.65 

and 1.77 quintal yield respectively could be added in subsequent trials. Although 

highest yield levels of 56 q/ha (2013-14), 48 q/ha (2012-13) and 41 q/ha (2016-

17) were obtained in irrigated timely, late and restricted irrigation trials. More 
2over low value of R  value justified highly variable nature of production.

Fitted straight-line equations by SAS software displayed in corresponding 

figures indicate that the linear growth was observed under irrigated timely and 

late sown as well as restricted irrigated timely sown conditions. During the year 

2008-09, the base yield levels were 4901, 112 and 2405 Kg/ha (intercept of the 

equation). The straight line equations depicted the linear trends in yield growth 
2over years and the equation also fitted well (maximum R =0.6649*** for 

restricted irrigation timely sown) with the yield data. More over yield increase in 

the zone progressed in linear fashion with annual increment of 47.83, 65.05 and 

176.76  kg/ha/yr in irrigated timely, late and restricted irrigated timely sown. 

Comparatively large value of CV confirmed more production had achieved under 

restricted irrigation conditions as CV varies from 4.7, 5.8 to 11.7.

Under restricted irrigated timely sown conditions of the zone, highly significant 

yield increase over years was registered and the linear trend was noticed from 

the base yield with annual increment of 1.76 q/ha along with highest growth rate 

per year. Study revealed that last 10 years of wheat production in the zone had 

witnessed remarkable progress in situation of hue and cry for climate change, 

hot & dry zone, and wheat yield improved in three production conditions.
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Peninsular Zone
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This zone comprises mainly of Maharashtra and Karnataka states of India. Three 

species of wheat viz aestivum, durum, & dicoccum are cultivated in this zone. 

Bread wheat cultivation is concentrated under irrigated environments, whereas, 

the cultivation of durum and dicoccum wheat is generally confined to rainfed/ 

restricted irrigation situation. Optimum ambient cool temperature for 

cultivation of wheat in this zone exists for a very short period causing the wheat 

to mature in around 90-100 days. Sorghum-wheat is one of the most prevalent 

cropping systems in western Marathwada and Vidarbha regions of Maharashtra 

and northern parts of Karnataka. Maize-wheat and sunflower-wheat cropping 

sequence are being practiced in some parts of Karnataka. Sugarcane-wheat 

cropping system is also gaining importance in Ahmedanagar and Kolhapur 

districts of Maharashtra and Belgaum district of Karnataka. High temperature all 

through the crop cycle, light soils, imbalanced use of organic and inorganic 

fertilizers, lack of sufficient irrigation are the major reasons for low productivity 

(15-16q/ha). 



Source SS MSS F value Pr > F Root MSE R2 CV Std Error t  value Pr > |t|

Model 91.77588 91.77588 16.06 0.0002 2.39082 0.2719 5.26439   

Error 245.78824 5.71601        

Total 337.56412         

Parameter  Estimates         

Intercept        0.77676 54.91 <.0001

Year        0.13803 4.01 0.0002

Table	1:	ANOVA	for	irrigated	�mely	sown	condi�ons

Figure	2:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	irrigated	�mely	sown	condi�ons
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Figure	3:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	irrigated	�mely	sown

Source SS MSS F Value Pr > F Root MSE R2 CV Std Error t Value Pr > |t|

Model 47.95398 47.95398 1.10 0.3003 6.61315 0.0223 22.27415   

Error 2099.22052 43.73376        

Total 2147.17450         

Parameter  Estimates         

Intercept        2.02035 13.77 <.0001

Year        0.32561 1.05 0.3003

Table	2:	ANOVA	for	irrigated	late	sown	condi�ons

Figure	4:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	irrigated	late	sown	condi�ons
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Source SS MSS F value Pr > F Root MSE R2 CV Std Error t Value Pr > |t|

Model 49.66978 49.66978 1.34 0.2577 6.09955 0.0455 16.46732   

Error 1041.72692 37.20453        

Total 1091.39670         

Parameter  Estimates         

Intercept        2.53945 13.55 <.0001

Year        0.65207 1.16 0.2577

Table	3:	ANOVA	for	restricted	irrigated	�mely	sown	condi�ons

Figure	5:		Regression	analysis	of	BLUP’s	for	promising	genotypes	for	irrigated	late	sown	condi�ons

Figure	6:	Best	Linear	Unbiased	Predictors	for	promising	genotypes	for	restricted	irrigated	�mely	sown	condi�ons
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Figure	7:	Regression	analysis	of	BLUP’s	for	promising	genotypes	for	restricted	irrigated	�mely	sown

Highly significant changes in wheat production had been observed during the 

studied time period span for irrigated timely sown, late sown and restricted 

irrigated timely sown trials in Peninsular Zone of country as observed in ANOVA 

tables (1, 2 and 3). Highly significant values of intercept reflected for three 

conditions along with highly significant slope for irrigated timely sown condition. 

Significant values of slopes were also seen for irrigated late as well as restricted 

irrigated timely sown conditions.

Scatter plots of BLUP's of  yields versus years were plotted to examine the 
2coefficient of determination (R ) and linear trend to assess progress in wheat 

production for irrigated timely, late & restricted irrigated timely sown 

conditions. Regression analysis for production figures revealed that under 
2irrigated timely sown condition, the R  value was highly significant (P<0.01). 

Linear trend in the year-wise wheat production in different conditions revealed 

an increase in average production of promising genotypes in zone by the end of 

2017-18. The production figures elevated to the level of 50q/ha (Fig. 2) for 

irrigated timely, of 41q/ha (Fig. 4) for irrigated late sown and 35q/ha (Fig. 6) for 
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restricted irrigated timely sown trials. However, in 2008-09, average production 

was 43q/ha, 28q/ha, 27q/ha and by the end of period  0.55, 0.34 and 0.75 quintal 

yield could be added in subsequent trials respectively. Although highest yield 

levels of 50 q/ha (2017-18), 40 q/ha (2013-14) and 41 q/ha (2017-18) were 

obtained in irrigated timely, late and restricted irrigated timely sown trials but 
2low values of R   for irrigated late and restricted irrigated timely sown conditions 

suggested  high variability in production values. More over consistent 

improvement observed in irrigated timely sown trials as justified by highly 
2significant value of R .

Study revealed that during a recent decade the wheat production had 

progressed nicely in this zone. Fitted straight-line equations by SAS software 

displayed in corresponding figures indicate that the linear growth was observed 

under all sown conditions of the zone. During the year 2008-09, the base yield 

level was 4265, 2781 and 2700 kg/ha respectively (as reflected by intercept of 

the equation). Irrigated timely sown conditions expressed significant yield 
2increase over years (R =0.27**) was registered and the linear trend was noticed 

from the base yield level of 4265 kg/ha with annual increment of 55.31 kg/ha. 

Comparatively large values of CV for irrigated late sown(22.27) and restricted 

irrigated timely sown(16.46) trials increased production figures in reflected 

erratic manner as compared to irrigated timely sown(5.26) situations of the 

zone.
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One of the underlying decisions to be made before choosing among methods or 

models is how to handle variations in environments and genotypes. It has been 

known that co-efficient of variation during analysis of coordinated wheat trials 

vary widely among experiments and/or environments. In classical likelihood 

approaches, generalized least squares estimators provide best linear unbiased 

estimators (BLUE) of fixed treatment means and mixed models produce yield best 

linear unbiased predictors (BLUP) of random effects. The statistical meaning of 

the word “best” in BLUE and BLUP implies that these estimators are with the 

minimum variance estimators among all linear, unbiased estimators, i.e. expected 

to be the most repeatable estimators across repetitions of similar experiments. 

The challenging underlying assumption for BLUE and BLUP estimators obtained 

by the common likelihood approaches is that variances are known. The standard 

practice in likelihood-based estimation approaches is to substitute estimated 

variances into generalized least squares or in mixed model analysis inspite of 

known variances. The errors of estimating variances are transferred to the 

estimators of the genotype means, but the exact inflation of standard errors and 

confidence intervals of estimators of means are not known. The theoretical 

difficulties encountered in obtaining the best estimators of means was dealt a 

series of recommendations on when to pool and when not to pool error variances. 

Large MET data analysis demonstrated improved estimators when proper 

accounting for heterogeneity was considered.

Best linear unbiased prediction is an important tool for wheat breeders that may 

be employed at several stages of the selection in crop improvement process. 

BLUP of genetic effects may substitute genotype means in early selection stages 

of wheat improvement trials. In early selection stages, the random nature of 

genotypes supports the use of mixed models. As large number of evaluated 

genotypes facilitate estimation of number of variance components and random 

effects. By assuming environments and genotype-environment terms as random, 

variances and covariances may be modeled and more information can be 

integrated into broad as well as for narrow genotype inferences. BLUP prediction 

is not a new technique. What is relatively new for plant breeders, since software 

for handling general mixed model has become available, is the possibility of easily 

defining BLUPs of random effects that contemplate the model complexity and the 

size of databases in most improvement programs. There are a large number of 

different combinations of fixed and random effects that can be predicted by the 

BLUP. For each value to be predicted, there are many alternative models differing 

with regard to the variance-covariance structure of the random effects. Even for 

the fixed effects estimation, parsimonious models of the covariance structure 

increase the prediction accuracy of genotype performance. Mixed model 

approaches can integrate genotype-by-environment covariances into the 

In End
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comparison of the genotype means. Mixed models in yield trials conducted at 

several environments unifies under one general procedure the estimation of 

stability parameters and average yield performances.

Assumptions of balanced data are not made, but normality is required for 

maximum likelihood estimation procedures to be performed. There, however, 

exists an important amount of phenotypic information where these procedures 

can be applied. Other limitations to the use of mixed model analysis are related to 

computer time and the possible lack  of convergence  of likelihood based 

algorithms employed to estimate variance components. Both problems may be 

tackled by adjusting the number of model parameters to be simultaneously 

estimated. Usually there exists more than one strategy to fit the same model. 

BLUP-based cross predictions consistently improved,  the accuracy of predicted 

performance of genotypes that have been never tested. Different versions of 

BLUP could be obtained depending on the procedure selected to connect tested 

and untested cross effects and the model for random genetic effects. BLUPs of 

genotype-environment combinations in yield trials also performed better than 

the mean to predict genotype performance in a particular environment.  In 

addition, BLUP accuracy was not dependent on check values, thus they can still be 

effectively used when check varieties fail. Better performance predictions 

increased the probability of selecting the best genotypes at crossing, early and 

late selection stages of the wheat breeding programs. The improved prediction 

methodology may enable the breeders to increase the selection intensity at 

earlier stages and possibly shorten selection cycles.
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